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Abstract

We investigate the causes of changing productivity growth trend perceptions using a
novel state-space framework for statistically efficient estimation of growth trends in the
presence of data revision. Uncertainty around contemporary US productivity growth trends
has been exacerbated by data revisions that typically occur several years after the initial
data release, as well as by publication lags. However, the largest source of revisions in
perceived trends comes from future realizations of productivity growth. This underlines
the importance of estimation uncertainty in estimates of trend productivity growth.

JEL classification: C32, C51, E6, E24, 047
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Productivity isn’t everything, but in the long run, it’s almost everything.

— Paul Krugman (1997, p11)

1 Introduction

Perceptions of productivity growth play a key role in many macroeconomic decisions, in-
cluding households’ intertemporal consumption smoothing, firms’ investment, the sustain-
ability of government fiscal policy, monetary policy and the solvency of public pension
plans, among 0thers.E| In addition to the interest in productivity growth, the level of trend
productivity is commonly used in the calculation of potential output, which in turn is used
in guiding monetary and fiscal policy decisionsﬂ The past several decades have seen a
nearly continuous stream of applied studies estimating recent trend rates of productivity
growth, as well as testing for evidence of changes in those ratesﬁ This has accompanied
important refinements in the measurement of productivity and its sources of growth/[]
One feature of this applied work that is often overlooked is the extent to which estimates
of trend productivity growth may be revised over time. As a simple example, consider the
estimates of U.S. Total Factor Productivity (TFP) growth published by the Congressional
Budget Office (CBO)[]| Figure [1] shows how CBO estimates of productivity growth trends
for specific years have been revised over time: the upper panel shows the changing estimates
for 1999 and 2000 while the lower panel shows estimates for 2008 and 2010 The earliest
estimates shown here are similar in all four cases, with 1.3% for 1999 and 2000 and 1.2% for
2008 and 2010. Following revisions published in 2021, however, these historical estimates
were greatly revised. Rates for 1999 rise to 2.6 and 2.7%, those for 2000 lie between 2.0

IFor example, see Ghirono et al. (2008)) on consumption smoothing, (De Long (1992)) on private
investment, Duarte Lledo et al. (2018) and European Commission (2017) on the sustainability of fiscal
policy, (Laubach and Williams (2003) on monetary policy and Neumark 2006) on the solvency of public
pension plans.

2See European Commission (2017) or Carstensen et al. (2024) for examples.

3Kahn and Rich (2007) in particular noted some of the challenges inherent in timely detection of
persistent changes in growth rates.

4For overviews, see Coelli et al. (2005) (particularly Chapters 3, 4, 6 and 9), Syverson (2011), Grifell-
Tatjé et al. (2018) or Zelenyuk (2023)).

°The terms Multi-Factor Productivity (MFP) and Total Factor Productivity (TFP) have both been
used to refer to productivity in a two-factor model of aggregate production using inputs of labor and
capital services. We use the terms interchangeably.

6Missing values reflect the absence of CBO estimates published in 2013 and 2020.



and 1.5%, those for 2008 fall below zero (-0.4 to -0.6%) while those for 2010 hover around
3.0%. The upper panel also shows major upward revisions (to over 2.0%) for both series
in 2017 as well as substantial (but transitory) revisions to the estimates for 2000 in 2003
and 2009. These revisions are striking not only for their relative size, but also for the fact
that many occurred a decade or more after the events had taken place.|Z| The point here is
not to single out the CBO’s estimates for criticism, but to show the extent to which the

perception of historical productivity growth may continue to evolve through time.
[Figure 1 about here.]

The fact that perceptions of productivity growth evolve over time has several import-
ant implications. First, it raises the question of what drives these changes. Second, since
expected rates of productivity growth may differ substantially from historical estimates,
care must be taken when empirical work requires a proxy for expectations of productiv-
ity growth. Third, decision makers may care both about point estimates or forecasts of
productivity growth as well as the uncertainty around them.

In this paper, we offer an original linear modeling framework that provides time-varying
estimates of productivity growth trends and explains how such estimates may evolve as time
passes. It also provides econometrically efficient forecasts and historical estimates of growth
trends as well as estimates of their varying estimation uncertainty. It does so by allowing
for two key sources of changes in perception: data revision and hindsight.

To illustrate the extent of data revision, Figure [2| shows growth rates of the two pro-
ductivity growth measures we analyze in this paper: U.S. MultiFactor Productivity (MFP)
and annualized Output Per Hour (OPHA). As in Figure 1 each series shows the estimate
for a particular year and traces how the estimate for that year varies over time. Substantial
variations are visible in the graphs, particularly for the latter seriesﬁ As Jacobs and van
Norden (2016) pointed out, productivity revisions are large relative to those in series used

to calculate productivity (such as output or hours worked). This stems in part from the

"While the years shown here are close to U.S. recessions, they are estimates of productivity growth at
potential output and so should abstract from the effects of business cycles.

8Revision analyses of U.S. productivity measures are provided by Aruoba (2008), Jacobs and van Norden
(2016), Bognanni and Zito (2016), Asher et al. (2021, 2022) and Glaser et al. (2024). Below we provide
further analysis of the revisions shown here, particularly in Table



fact that productivity is measured as a residual: it is the variation in output that is not
explained by variations in inputs.ﬂ The modelling of data revisions has made important

advances in recent years, which we draw upon belowm
[Figure 2 about here.|

It is also interesting to compare the estimates in Figure[l|and Figure [2| for MFP in 2000
and 2010. The former estimate MFP growth at Potential Output whereas the latter are
official estimates of actual MFP growth. The short-lived but substantial revisions to the
CBO estimates for 2000 in 2003 and 2009 (noted above) as well as their rise and fall from
2016-2023 are almost entirely absent from the latter series. This implies that the changes
in the CBO estimates were largely due to changing views (over the span of two decades)
about the difference between growth in potential and actual output in 2000. Comparing the
estimates for 2010, we again see that official estimates of MFP growth in 2010 fluctuated
around 3.0% over time, while the CBO’s estimates of its growth at potential output fell
from its initial level of 1.2% to 0.6% before an abrupt revision to 3.0% in March of 2021.
This again implies that it is the change in perception (after a delay of a decade or two)
of the gap between potential and actual output that appears to be responsible for the
change in CBO estimates rather than important revisions in published MFP estimates. To
understand what could cause such changes, we turn to consider the role of hindsight in
revising estimates.

To illustrate the role of hindsight, Figure |3| shows estimates of the trend growth rate
of MFP (upper panel) and OPHA (lower panel) produced by a simple univariate model
of trend and Cycleﬂ Because the trend and cycle components are not directly observed,
their estimates (as in any linear state-space model) are based on weighted averages of the

available observations. However, the weights vary depending on the point from which the

9The correlation between revisions in the input and output series also plays an essential role. See Jacobs
and van Norden (2016, Section 2).

10 A key insight from this literature is that revisions are typically “noisy” and somewhat predictable. One
implication is that there are potential gains from taking weighted averages of individual “noisy” releases
to produce more efficient estimates. This contrasts with the conventional practice of using only the most
recently published estimates, which are assumed to be the best available.

HSpecifically, the model assumes that (1) productivity growth is the sum of a trend and cycle, (2) the
cyclic component follows a stationary AR(2) process, (3) the trend follows a random walk, and (4) shocks
to the trend and the cycle are uncorrelated and i.i.d. Gaussian. The model is fit to the “final” release of
MFP and OPHA (described below), and therefore is unaffected by data revision.



estimates are made. In Figure [3] the red line shows estimates made at the end of the
sample period (i.e. using the full sample) of the trend for each point in time. The blue
line shows estimates of the trend in year t based only on the sample up to and including
year t. The former are referred to as “Smoothed” estimates while the latter are known as
“Filtered” estimates. The difference between the two sets of estimates shows the extent
to which observations after year ¢ (i.e. “hindsight”) caused us to revise our estimates for
year t[”?] This source of revision has been studied in other macroeconomic contexts. For
example, Orphanides and van Norden (2002) examine revisions in estimates of U.S. output
gaps and find that the difference between filtered and smoothed estimates is the dominant
source of revisionsm Cyclically-adjusted or Capacity-Utilization-adjusted series (Fernald
(2014)) may also undergo additional revision as assessments of potential output or capacity

utilization are adjusted with the benefit of hindsight (Kurmann and Sims (2021)).
[Figure 3 about here.]

In this study, we show how taking into account data revision and filtering methods (as
well as publication lags and parameter instability) affects the estimation of trend productiv-
ity growth, leading to changing perceptions of historical multi-factor and labor productivity
growth trends. We provide an original framework for efficient trend-cycle decompositions
using advances in state-space modeling that allow for data revisions that may be a com-
bination of both news and noise[y] Standard tools for linear state-space models can then
produce updated estimates and forecasts of trend growth, as well as calculate their con-
fidence intervals, while allowing for missing observations due to publication lags or other

sources.

12The figure ignores the effects of publication lags. As we explain below, these increase the importance
of ex post revisions by causing decision makers to rely on forecasts or “nowcasts.” Publication lags for
MFP have been variable and particularly long.

13The output gap is similar to productivity growth in the sense that it too is constructed as a residual
(the difference between observed and potential or trend output). Their study differs from ours in several
important respects however; it examines the cyclical component rather than the trend, the level of output
rather than productivity growth, and they do not model data revision.

4The concepts of“news”and “noise”in the data revision literature differ from the ones adopted in the
“news”-driven business cycle literature. As will become clear in section in the data revision liter-
ature‘“news ”are‘“noise” are measurement errors, whereas in the news-driven business cycle literature, a
“news”shock refers to signals that economic agents receive about future productivity growth (e.g. Beaudry
and Portier (2004) and Fujiwara et al. (2011)). For a reconciliation of these concepts see Goodwin and
Tian (2017).



Using original-vintage data on both multi-factor and labor productivity, our model
prefers to estimate trends using a weighted average of many releases that puts relatively
little weight on initial estimates compared to revisions released one or more years later.
This results in uncertainty around the estimate of trend growth that dissipates substantially
as years pass. In addition to showing how uncertainty and the optimal revision weighting
change as time passes, we also document the extent to which “real-time” trend estimates
tend to lag retrospective estimates in detecting changes in trends.

The applied productivity literature typically employs the most recent vintage to under-
stand the sources of changes in trend productivityﬂ Models analogous to ours which only
use the most fully-revised release (Figure [3) produce trend productivity growth estimates
that are much smoother than most commonly accepted estimates. Compared to several
vintages of trend productivity estimates from the Congressional Budget Office (CBO), our
real-time estimates capture similar broad trends but with periods of significant deviations.

In the next section we detail the data used for our analysis, which are among the most
widely studied U.S. productivity series. We also show the extent to which the series are
revised over time, and distinguish regular and “benchmark” revisions. Thereafter we lay
out the statistical model we use to estimate trend productivity growth for each series.
The model is a conventional linear state space model with uncorrelated Gaussian errors
that may be estimated and manipulated with conventional tools. Readers less interested
in econometric details may pass lightly over this section. We then look in detail at the
historical estimates of trend growth that the model produces. In addition to comparing
them to CBO estimates, we compare them to the degree of uncertainty surrounding the
estimates and discuss the weights that they place on various releases and revisions of the
MFP and OPHA series. The subsequent section contrasts these historical estimates with
those made under conditions resembling those faced by decision makers, who effectively face
a forecasting problem. We show how this affects the weights assigned to various releases
and revisions, and how the estimates of trend growth and their uncertainty evolve as time

passes and more information arrives. Finally, we consider the role that instability in the

15For example, Feenstra et al. (2015) present a new generation of the Penn World Table with new estim-
ates of total factor productivity figures across countries. Pinkovskiy and Sala-i-Martin (2016) comment,
however, that “newer need not be better”.



estimated parameters of our model may influence our results.

2 Data

Our analysis uses 32 vintages of the MultiFactor Productivity (MFP) series for the U.S.
Non-Farm Business Sector covering the years 1949 to 2021 and published between February
1995 and November 2022.@ In addition, 408 vintages from May 1968 to June 2023 of
Output per Hour (OPH) series are used, covering the quarters from 1947Q2 to 2023Q1.
Both series are from ALFRED; historical releases for MFP were provided by the Bureau
of Labor Statistics[l"] We use log differences of the level of both series to mitigate effects
of benchmark revisions (see Croushore 2011).

We initially compared revisions in annual estimates of MFP to those in quarterly es-
timates of OPH and found strikingly dissimilar resultsﬁ To eliminate artifacts due to
differences in their reporting frequencies we instead compare MFP to annualized OPH
data (OPHA), which is calculated as the annual averages of OPH.H Figure 4] shows the
MFP, OPH and OPHA series for the last vintage in our sample. The patterns in MFP and

OPHA are similar, but the quarterly OPH series is much more volatile.
[Figure 4 about here.|

While both series are subject to a fairly regular revision cycle (e.g. the publication of
preliminary and then “revised” estimates, and perhaps annual revisions of seasonal factors)
they are also subject to irregular “benchmark” revisions. These are due to methodological
or definitional changes and typically revise several decades of previously published estim-
ates. Table [1] displays the release dates for benchmark revisions.

Due to their irregular nature, we treat them differently from regularly occurring revi-

sions. The value of the benchmark release for period ¢ is defined as the value for period ¢

16The November 2022 release of preliminary estimates for 2022Q3 incorporated the 2022 update of
the National Income and Product Accounts (NIPA) and included a new methodology for estimating hours
worked. Accordingly, we ended our sample with that benchmark revision. For details on the methodological
changes, see Eldridge et al. (2022).

1"The authors thank Corby Garner at the BLS for help in accessing early vintages.

18Results for quarterly OPH are available on request.

19 OPHA retains the quarterly releases of OPH, but the use of annual averages means that our last
observation is for 2022.



in the first benchmark revision published for that period. If the initial release for period ¢
coincides with a benchmark revision, the value of the next benchmark revision for period
t is used. For example, in the case of MFP, the value of the benchmark release for 1996
corresponds to the year 2000 vintage, the value of the benchmark release for 1997 also
corresponds to the year 2000 vintage, but the value of the benchmark release for 1998
corresponds to the year 2004 vintage. We also define the pre-benchmark release, which is
simply the last release published before a benchmark release, as well as a “Final” release,

which is simply the last release in our data set [’
[Table 1 about here.]

Table [2| shows descriptive statistics for our productivity growth measures and their
revisions. Regarding the variation in the series, we see similar results using Std. Dev. and
MA. Dev. The temporal decomposition of revisions shows that initial revisions (2nd - 1st)
are relatively much more important for the MFP series than for the OPHA series. They
also show that revisions may continue long after the initial release; variation more than 5
years after the initial release (Final - 5YT) is roughly 60% or more of the size of the observed
aggregate variation. Similarly, revisions after the initial benchmark revision (Final - BM)
also appear to be substantial.

The extent to which these revisions simply reflect “noise” or may lead to initial misper-
ceptions of longer-term productivity growth trends requires careful modeling, to which we

turn in the next section.

[Table 2 about here.]

3 Methodology

The model introduced here builds on work by Jacobs and van Norden (2011), Jacobs et
al. (2022) and Goto et al. (2023) on modelling time series that are subject to periodic

20This usage of the term “Final” has become endemic in the data revision literature; see Orphanides
and van Norden (2002) or Croushore (2011) for examples.



revision@ All use a linear state-space framework to model multiple series that are assumed
to be estimates of the same (unobserved) “true” series g,. The jth estimate of 4, y;,, is
assumed to be equal to the target series 3, but for the presence of two kinds of measurement

€ITOTS:
Noise errors (&;;) which are mean zero and independent of ;.

News errors (v;;) which are mean zero and are independent of all information available

at the time of their publication.

While noise errors follow classical assumptions for the behavior of measurement errors,
news errors mirror the behavior of rational forecast errors. Among other things, this implies
that cov(&;¢, 5:) = 0, but cov(vjy, ) > OH The presence of noise errors also implies that
some positive fraction of the variance of data revisions is predictable, while revisions due
to news errors are unpredictable (by definition).

The framework that we present below further distinguishes between cycles (¢;) and
trends (7;) so that

~ - c T
YW=C+Te=Yjt+ Vi TV + &t

for the jth release, so that news errors have distinct cycle and trend components, while
noise errors are assumed to be independently distributed. Therefore a key challenge for
decision makers will be to decide whether surprises in y;, are due to measurement noise,

news about cyclical variation in productivity, or news about productivity growth trends.

21Other advances in estimation and forecasting with data subject to revision include Koenig et al. (2003),
Garratt et al. (2008), Kishor and Koenig (2012), Cunningham et al. (2012), Aruoba et al. (2013, 2016),
Jacobs, et al. (2022), Anesti et al. (2022), Goto et al. (2023), Koop et al. (2023), and Almuzara et
al. (2024). Jacobs and van Norden (2011) introduce the basic state-space framework for news and noise
revisions. Although they discuss how to incorporate trend-cycle decompositions in their framework, this
is not examined in their application and our modelling of noise shocks is slightly different. Anderes et al.
(2024) also consider the problem of trend-cycle decomposition when data are subject to revision, but focus
on the estimation of the cyclical component (the output gap) rather than the trend. Jacobs et al. (2022)
and Goto et al. (2023) consider how to reconcile estimates subject to revision, using bivariate models
where two series provide alternative estimates of the same underlying quantity, such as US GDP (Jacobs
et al. (2022)) or US employment (Goto et al. (2023)).

22This also implies that cov(v; ¢, v;¢) > 0, and if y;, is published after y; +, then var(v;;) < var(v; ).



3.1 A State-Space Model

For simplicity, our model assumes that the (true, unobserved) cycle ¢, follows a stationary
AR(2) process while the trend is assumed to be a random walk. While we use five distinct
data releases in our application, for compactness we specify the model below for the case

where we have only two releases y; ; and s .

State vector

The state vector a; = [¢y, ¢i1, 71, (Vf), (V])]', where ¢, ¢;_1,7; are all scalars and v{ and
v] are 2 x 1 vectors. Note that the news errors, but not the noise errors, form part of the

state vector.

Measurement Equation

101 -1 -1 -1 -1
v o |
101 0 -1 0 -1 ot

where Y; = [y14,y2¢) and [§14,&a4) ~ 4.i.d. N(0, H) and H is a diagonal matrix with

elements [Uf,ag]. We see that noise errors appear exclusively as random errors in the

measurement equation.

State Equation

o =T o; 1+ R- )




o pe 00000 0 1100
1 0 00 0O0O0 0000
0 010 00O 0 011
whereT=10 0 0 0 0 0 0|, R=1|10 0 0
0O 0 00O0O0O 0100
0 0 00O0O0O 0010
(00 000 0 0] 00 0 1
A o 0 0 0]
and Vae ~1.1.d.N |0, 0 " 0 0
Iz 0 0 o7 0
zZn |0 0 0 o3"]

The first two rows of the T" matrix determine the dynamics of the cyclical component
¢, while the third row is responsible for the random walk trend 7;. The remaining rows of
T are filled with zeros as the properties of the news errors are determined via R and the

measurement equation.

3.2 Estimation

Our estimated model includes five releases in the measurement vector: [lst, 2nd, 3rd,
benchmark, final] vintages for MFP, and [lst, 2nd, lyr, benchmark, final] vintages for
OPHA P Our earliest release of MFP ends in 1993, while that for OPHA ends at 1968Q2.
Consequently, any releases prior to 1993 for MFP and prior to 1968Q1 for OPHA are
treated as missing values. Recent periods also contain missing values for some releases.
For example, for MFP in 2021, our sample only includes the 1st and 2nd releases, so the

3rd and benchmark releases are treated as missing.

BWe also experimented with four releases (excluding final vintage.) The Bayes factor preferred five
releases.

10



Estimation uses a random-walk Metropolis-Hastings algorithm with a diffuse prior. The
prior information is detailed in Table We generate 100,000 draws, discarding the initial

80,000. For each parameter draw, latent variables are estimated.
[Table 3 about here.]

We report the median and 50% credible bands for the parameters based on our full
data sample in Table The AR coefficients for the cyclical component are similar for
the two series and they display the “hump-shape” (opposite signs) often associated with
simple business cycle models. The first and final releases for MFP are the noisiest, while
the fourth and final release noises are the noisiest for OPHA. News about the trend is
evenly distributed across the various releases for MFP while that for OPHA is largest in
the 1 Yr release while the initial release contains relatively little information. News about

the cycle is dominated by the last release included in the model.
[Table 4 about here.]

To better understand what the above full-sample estimates imply for changing percep-
tions of productivity growth trends, we consider a variety of measures in the next section,
before turning to consider the effects of publication lags and parameter instability there-
after. The former gives a better sense of the model’s properties and its historical assessments
of productivity growth trends, while the latter shows how the model behaves when used to

inform decision making and current analysis.

4 Full Sample Results

4.1 Productivity Growth Trends

Figure [5] shows the model’s estimates of the trend growth rate of productivity. These
are based on the full-sample parameter estimates shown in Table [4] and are smoothed

estimates. These should be interpreted as the model’s best “historical” perspective on trend

24We use the same prior for both measures of productivity growth. Given the small sample size for MFP,
we also investigated an inverse gamma distribution as the prior for the standard deviation parameters. The
alternative prior is specified in Table [7] and results are presented in Appendix [A]

11



productivity growth, a mostly retrospective view that takes into account the full sample
for all five releases of each variable. The red bands around the estimates indicate the 68%
credible interval for the trend. These intervals are slightly wider near the beginning and
end of the sample, but are generally narrow enough to imply very statistically significant
variation in productivity growth trends, particularly for OPHA.

The trends for MFP and OPHA are broadly similar until the 1980s, with growth not
far from 2% through to around 1970 before declining to near 0% by 1980. Although both
series show a gradual recovery over the next 20 years, the recovery in OPHA is slightly
more than double that in MFP and exceeds its previous peak in the early 1960s. After
2000, MFP stagnates somewhat while OPHA shows a much steeper decline. By 2022, both

are close to 1%.
[Figure 5 about here.|

This pattern (decline in the 1970s, recovery in the 1980s & 90s, decline thereafter) is
unremarkable and similar results may be produced by much simpler techniques. However,
note that these variations in trend growth are much larger than those we saw in Figure [3]
which were produced by an analogous model with the same dynamics for trend and cycle,
but which used only the “final” data release and ignored data revision. Figure [0] directly
compares the two models’ filtered estimates of trend (black for our multi-release model,
green for the No Revision model). While filtered estimates from the No Revision model
are more volatile than that model’s smoothed estimates, they largely miss the decline of
growth in both series to near zero around 1980 and much of the recovery in growth rates

thereafter.
[Figure 6 about here.|

Figure [6] also compares both of these model’s filtered estimates to several releases of the
CBO'’s estimates of growth at potential for MFP and OPH. While our model largely tracks
the CBO estimates for MFP from the 1960s through 1980, it provides smaller estimates of
the rebound in MFP growth through to 2000. For OPH, the multi-revision model tracks
the CBO estimates more closely, with the exception of the 2000-2015 period where our

model produces substantially higher estimates of trend productivity growth.

12



Weighing Revisions

To understand how our model arrives at its filtered estimates of trend growth and why
they differ from other estimates, we follow Koopman and Harvey (2003) and examine
the weights it places on the initial release and on each subsequent revision.lﬁ Figure m
shows these weights, with results for MFP in Figure and those for OPHA below in
Figure [Tl Filter-implied weights for both series decay smoothly, with those for OPHA
decaying slightly faster than those for MFP, producing slightly more volatile growth trends
for OPHA. In both cases, several different releases receive substantial weight in estimating
the trend growth rate@ The benchmark revision receives substantial weight. For OPHA,
it is the most important component of the estimated trend and receives a weight that is
slightly larger than that of the next two components combined, or just under half of the
total weight assigned to all five components. For MFP however, the revision from the 2nd
to the 3rd release receives a still greater weight. Together with the benchmark revision,
these two components account for about two-thirds of the total weight assigned to all five
components. Interestingly, revisions in the final available vintage receive relatively little
weight for either series, which contrasts with the conventional practice of using only the
most recent available vintage to estimate the trend. This suggests that filtered estimates
may continue to undergo important revisions for several years after the initial release but
should change little after the first benchmark revision, something we investigate in greater

detail below.

[Figure 7 about here.]

25In the following discussions of Kalman Gains and Weights, all calculations are based on our median
parameter estimates and assume the absence of missing observations. The formulas in Koopman and
Harvey (2003) provide a set of five linear weights w1, . .. ,ws] for the five releases [y, ..., y5] in our model.
We convert these into the implied weights on the first release and subsequent revisions using the fact that

W1Y1 + wal2 + W3Ys + Wals + WsYs = (Z wj) Y1+ (Z wj) (Y2 —y1) + (Z wj) (ys — y2)
j=1 j=2 j=3

+ (wa +ws) (ya — y3) + ws (Ys — va)

26We found analogous results for estimates of the cyclical component of productivity growth ¢, 1, since
these are simply —1x the weights for 744 1.

13



5 The View at the Leading Edge

The filtered estimates presented in the previous section for a given period ¢ may differ from
what an analyst using our model in period ¢t would have calculated in two important ways.
First, all the analysis presented above used the full-sample parameter estimates presented
in Table The filtered estimates may therefore vary to the extent that the parameter
estimates are unstable and differ over shorter samples. Second, and more importantly, the
estimates presented above ignored publication lags. When estimating growth trends in
year t, the latest data available is that for year t — 1 at best; MFP estimates were often
published with multi-year delays. Analysts making a “nowcast” are therefore forecasting
one (or more) years into the future. The fact of missing observations due to publication
lags is commonly referred to as “the ragged edge”.

The ragged edge problem becomes much more serious when data revisions are used in
a model. Although the first estimate for year ¢ may be published at ¢ 4+ 1, the second
estimate may not be available until ¢ 4+ 2, and the benchmark revision may be delayed
further still (see Table E] The “final” estimate used in our model is also unavailable for
current analysis, although the results in Figure [7| show that it receives modest weight.

In this section we address the ragged edge and the parameter instability issues sep-
arately to understand how they may affect changing perceptions of productivity growth.
We begin by revisiting the filter weights shown above in Figure |7| to consider how they
vary when one or more series are unavailable. We then compare the filtered and smoothed
estimates from the previous section to filtered estimates with varying amounts of missing
information. We also examine how quickly the precision of the estimated trends improves as
more information becomes available. Thereafter we repeat our analysis using rolling estim-
ates of our model parameters to understand the degree to which estimates of productivity

growth trends are affected.

2"Recalling that OPH estimates are published at a higher frequency and with shorter lags than those
for MFP, this problem is most serious for MFP. Note also that the BLS has increased the publication and
revision frequency for both series in recent years, which should mitigate this problem to some degree. See
the discussion, below.

14



5.1 At the Ragged Edge

To understand how the estimation of the trend productivity growth rate 7,,; changes at
the ragged edge, we now consider how the weights on the observations at ¢t change when
one or more releases are unavailable. Table [5] presents these results ]

The first point to note is that the weights assigned by the filter change only slightly as
more components are released. This implies that revisions to the estimated trend growth
rate largely reflect the incorporation of new revisions rather than a re-weighting of available
releases. Taken together with the weights assigned to the various revisions shown above
in Figure [7] this implies that much of the information needed to estimate the trend pro-
ductivity growth rate is not available until several years have passed. In the case of MFP,
the largest weight is on the revision from the 2nd to the 3rd release. When revisions are
released annually, this will typically imply a delay of 3 years before even half of the weight
in filtered series can be allocated ’’] Even then, substantial weight (43% of the total) for
the filtered estimate must wait until the benchmark and then the final revisions are avail-
able. For OPHA, while revisions are released more frequently (quarterly), just over half
of the total weight (54%) is put on the benchmark and final revisions. This again implies
that several years may need to pass before much of the information needed for reliable

estimation of the trend growth rate is available ]
[Table 5 about here.]

The above analysis of the filter weights has an important shortcoming, however. Table
showed that some revisions tended to be much larger than others, so that the apparent
importance of a larger weight might be (partially or totally) offset by a lower variability
of the associated revision. Furthermore, as shown in Figure [7] estimates of the current
trend growth rate depend on a long distributed lag of past observations. The most recent

filter weights alone could therefore give a distorted view of how quickly or slowly statistical

28When all 5 releases are available, as shown in the first line of the table for MFP and for OPHA, the
weights correspond to those shown in Figure[7] at a lag of one period.

29Historically, MFP revisions have not always been released at regular intervals. There were no releases
in 1997 or 2005. In 2020, the BLS began releasing estimates in the spring and revising them in the fall of
the same year.

30As shown in Table |1l benchmark revisions for OPHA were released in 1971, 1981, 1990, 1996, 2010,
2013 and 2018.
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uncertainty about productivity growth trends dissipates over time as more information
becomes available.

An alternative approach is to compare estimates of the error variance of the trend
estimation. Specifically, consider var(7i11o — Ty1), where 7,1 is now the unknown true
value of the growth rate and 7,110 is the estimated growth rate from our model conditional
on the information in §2 which contains model parameters © as well as data Y PT| Table
|§| compares results for MFP and OPHA as more information is used to estimate 7;,1.
Results in the table are shown relative to the 1-period ahead overall estimation uncertainty
var(7y41/42 = Y;), where Y; contains all releases for all years up to and including year
t. Note that in this case £2 does not include O; instead the distribution of © is inferred
from Yr and the conditional variance var(r41|§2 = Y;, ©) is integrated over the marginal
distribution of ©. The first line of Table [6] shows how the uncertainty about the trend
growth rate changes when we condition on the median values of the estimated parameters
shown in Table il We see that the conditional variance drops just less than 8% for the
MFP trend and less than 3.5% for the trend in OPHA; this suggests that model parameter
uncertainty is not a major contributor to overall trend uncertainty (something that we

return to below.)
[Table 6 about here.]

The subsequent lines in Table [6] show how the error variance of our estimated trend at
t + 1 is further reduced as we take account of preliminary productivity estimates for ¢ + 1
and their successive revisions. When all series are available for t +1 (£2 = {@r,Y;11}), the
change in the relative uncertainty gives us a measure of the overall impact of data revision
at t + 1. We see that the relative uncertainty for trend growth in MFP has decreased from
92.3% to 78.0%; just over three quarters of the uncertainty about trend growth from year ¢
remains. The situation is marginally better for OPHA, where the relative uncertainty falls
from 96.7% to 67.1%, implying that just over two thirds of uncertainty remains. While these
reductions show that productivity data revisions are economically significant, they are not

the only source of changes in productivity growth perceptions. The final line shows that

31This differs slightly from standard notation (such as that of Durbin and Koopman (2012, Section 4.3.1),
where P;y1 = var(a41|Y:) and a4 is the state vector and it is assumed that the parameters @ of the
system matrices are known rather than estimated.
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after 12 additional years of data there remains just over one-third (36.1%) of the original
uncertainty for MFP and just over one-quarter (26.1%) for OPHA. This shows that the
future evolution of productivity (i.e. “hindsight”) provides somewhat greater information
about current growth trends than data revisions will.

A way to visualize the effect of ragged edges on estimated productivity growth trends is
to compare the filtered and smoothed trend estimates shown above (which ignored ragged
edges) with their ragged-edged counterparts. Figure |8 presents the results. It shows the
same smoothed estimates shown in Figure [5[ (red solid line with credible bands) alongside
the filtered estimates shown in Figure @ (brown solid line) and adds several sets of ragged-
edge filtered estimates for comparison. For example, when the sample ends in 2000, we
include the first release of the 2000 value, the first and second releases of the 1999 value, the
first, second, and third/one-year releases of the 1998 value, and so forth. We then retain
the estimate for 2000 as the ragged-edge series with one release, the estimate for 1999 as
the ragged-edge series with two releases, the estimate for 1998 as the ragged-edge series
with three releases, and so on. We then proceed to the next year where the sample ends

in 2001. All are calculated using the same median parameter estimates from Table
[Figure 8 about here.|

For MFP, we see that the ragged edge estimates lie close to the filtered estimates which
ignore ragged edges, implying that the overall effects of publication lags are modest. This
is consistent with the results of Table [ which suggested that smoothing over several years
is more important to trend estimation than the replacement of missing observations. It is
also interesting to note that nearly all the filtered estimates lie within the 68% credible
interval around the smoothed estimates. Finally, all the filtered estimates appear to lag the
smoothing estimates in the detection of turning points (seen most clearly around 2001).
There is also some suggestion that estimates with more missing observations have slightly
longer lags. The latter effect is seen most clearly around the 2001 turning point in OPHA
where the lag at the peak decreases steadily as we receive the 1st, 2nd, lyr and BM
releases in turn. The ragged edge estimates now follow the filtered estimates that ignore

ragged edges a bit less closely, and they more frequently depart from the 68% credible
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interval around the smoothed estimates. This is consistent with the more modest degree

of smoothing of the OPHA data that we saw in Figure[7]

5.2 Real-Time Behavior

As noted at the outset of this section, parameter instability may also contribute to changing
(model-based) estimates of trend productivity growth. This question is of potentially great
concern to decision makers, so we now investigate the extent to which this may contribute
to variability in our model’s trend growth estimates. We do so via a (pseudo) real-time
simulation.

To this point our results have been based on full-sample estimates of our model para-
meters © as shown in Table . We now compare the resulting estimates of trend growth
rates with those produced using rolling estimates of ©. Estimation uses an expanding win-
dow whose end-point starts in 1999 and ends in 2021 for MFP and 2022 for OPHA, and
includes the ragged edge effects considered in the previous section to make the simulation
as realistic as possible. As an example, when estimating the trend component of MFP
growth for a given year, say 2000, the available data includes values from the 1st release
for 1998, the 1st, 2nd, and benchmark releases for 1997, the 1st, 2nd, 3rd, and benchmark
releases for 1996, and so on.

Figure [9] compares the full-sample smoothed estimates of trend growth shown above in
Figure [5| with the results of our real-time simulation. The real-time filtered estimates it
shows for each year t are based solely on data and parameter estimates that were available
to agents in that year. Because the preliminary data for year ¢ are not yet published at ¢,
the filtered estimates shown reflect a real-time “nowcast” of trend productivity growth. We
see that, like their full-sample counterparts, the real-time filtered estimates are somewhat
more volatile than the smoothed estimates and appear to lag turning points somewhat, but

again mostly lie within the 68% credible intervals for the full-sample smoothed estimates.
[Figure 9 about here.|

However, there is no clear analogue to the smoothed estimate in a real-time simulation:
at the end of the sample, “smoothed” estimates are identically equal to the filtered estim-

ate. As an approximate analogue therefore, the figure compares the full-sample smoothed
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estimates for year t — 5 with our real-time smoothed estimates for the same year based on
information as of year t. Figure [9] shows that the two series are tightly bound together, as
we would expect from stable parameter estimates@

Figure |10] provides more evidence on the convergence of real-time filtered estimates to
the full-sample smoothed estimates. It includes the full-sample smoothed series previously
shown in Figures |5 and 8] (red solid line with credible bands), as well as the real-time
filtered estimates (Y, blue solid line) together with their 68% credible bands. The green
line (denoted Y;_o)¢) shows real-time estimates for year ¢ —2 conditional on the information
available in year t. At that point at least one release for period t — 2 is typically available.
Again, the corresponding 68% credible bands are shown.

For both measures of productivity, we again see that the real-time filtered estimates
lag the smoothed series, with Y}, exhibiting the greatest lag, followed by Y, 5. A sim-
ilar pattern appears in the ragged-edge results of Figure [§] where filtered releases lag the
smoothed estimate, and additional releases gradually bring the latent series closer to the
smoothed series. The credible bands for the filtered estimates are wider than those of the
smoothed estimates, with Yy, being the widest, followed by Y;_s;, showing how additional

data releases and revisions help reduce estimation uncertainty.
[Figure 10 about here.]

As expected, the full-sample smoothed estimates of trend productivity growth are not
particularly volatile around NBER recessions. In contrast, the real-time filtered estimates
often (though not always) exhibit considerable volatility around recessions, leading to eco-
nomically significant differences between the two approaches. For MFP, the three recessions
for which we have real-time estimates (2001, 2008-2009, 2020) show notable declines in the
trend productivity growth rate before and after recessions, without corresponding move-
ments in the full-sample smoothed estimates. For OPHA, aside from a sharp but transitory

rebound following the 2008 recession, this pattern does not appear in other recessions.

32This is also consistent with the results in the first line of Table@ which showed that conditioning on the
median parameter estimates rather than their full distribution did little to reduce estimation uncertainty,
as one would expect if parameters were estimated with good precision. This also gives indirect evidence
that smoothed estimates of trend growth have largely converged after 5 years.
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6 Conclusion

As we showed in Figure [I], the extent to which perceptions of productivity growth trends
are revised over time is sometimes puzzling. To help understand the importance of various
factors that may shape the changing perceptions of productivity growth trends, we presen-
ted a simple linear model that produces statistically efficient estimates of those trends
even after taking account of data revisions, publication lags, and the uncertainty stem-
ming from trend/cycle decompositions. Unlike analogous models that ignore data revision,
the historical trends for the U.S. that it estimates match the widely-accepted narrative of
high-growth through the mid-1960s, a slowdown through the 1970s to near zero, a period
of recovery peaking around 2000 and a renewed slowing of growth thereafter. It finds that
the variations in trend growth are much more pronounced for annual labor productivity
(OPHA) than for multi-factor productivity (MFP).

We then use the model to understand how we should expect perceptions of productivity
growth trends to be revised over time as more data become available and existing series
are revised. We compare contemporaneous and historical estimates, estimates from models
with and without data revision, from models with and without publication lags, and from
models with and without rolling parameter estimates. We also examine how the standard
errors of the growth trend estimates vary as we increase the information available to the
model.

Because of the noisy character of productivity series, our model prefers to use a weighted
average of several different releases, with relatively higher weights on those associated with
benchmark revisions and only modest weights on subsequent changes. With relatively low
weights for initial releases, this increases the imprecision of early trend estimates. Publica-
tion lags, particularly for MFP, tended to be long and variable, adding further uncertainty
to trend growth estimates used for decision-making. However, the most important reduc-
tions in uncertainty around growth trends came not from the elimination of publication
lags, nor the use of fully revised data, but from the ability to observe the future evolution
of the series.

This result has some implications for how decision makers should interpret recent pro-

ductivity growth trends. First, without minimizing the importance of providing timely and
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accurate data, and the improvements that have been made in this regard in recent decades,
it suggests that there are diminishing returns to further improvements and that even rapid
and precise measurement may leave agents with considerable economic and statistical un-
certainty about the rate of trend productivity growth. Second, we found that preliminary
estimates of trend growth tended to detect shifts in trends with a few years delay, and
sometimes detected false changes in trends around recessions. However, these changes lay
well within the uncertainty bands surrounding even historical estimates, and so should not
be misleading to those mindful of the limited precision of preliminary estimates. Third,
our model’s growth trends estimates typically undergo little revision after five years, by
which time the most influential revisions have typically taken place. It therefore offers little
insight into major changes in perceptions that may occur a decade or more after the fact.

We chose to keep the model used here as simple as possible while addressing the multiple
sources of uncertainty that we highlighted above. No doubt it could be usefully extended
in a variety of ways. For example, one might prefer a mixed-frequency model that would
jointly model labor and multi-factor productivity, as they no doubt are subject to some
common cyclical and trend shocks. Alternatively, a three-factor model could be used to
jointly model output, labor, and capital services. To the extent that theory or applied
work have suggested variables that are predictors of future productivity growth, the extent
to which they can improve the precision of current trend estimates may produce useful
insights.ﬁ Of course, there are a plethora of alternative trend/cycle decompositions or

selections of data vintages that might also be explored.

33For an example of a multivariate approach, see Zaman (2025).
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A Alternative prior: Inverse gamma distribution

Due to concerns about the small sample size of MFP, an inverse gamma distribution prior
has been imposed on the standard deviation parameters in addition to the benchmark
diffuse prior presented in Table |3| (see Table . This alternative prior is introduced to
mitigate potential issues associated with a diffuse prior, which is analogous to MLE. Results

are shown in Tables [§ and [9] and Figure [I1]
[Table 7 about here.|
[Table 8 about here.]
[Table 9 about here.]

[Figure 11 about here.|
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Figure 1: CBO’s Changing Estimates of U.S. Trend Productivity Growth
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Figure 2: Revisions of Productivity Growth Rates in the U.S.
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Figure 3: Trend Estimates from a Simple Model
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Figure 4: MFP, OPH, and OPHA
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Figure 5: Trend Productivity Growth
(Smoothed Estimates, Full Sample)
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Figure 6: Comparison to No-Revision and CBO Estimates (Full Sample)
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Figure 8: Trend Productivity Growth (Ragged Edge)
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Figure 9: Real-Time Filter vs Full-Sample Smoother
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Figure 10: Trend Productivity Growth (Real-Time)
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Figure 11: Trend Productivity Growth, Inverse Gamma Prior (Ragged Edge)
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Table 1: Benchmark Revisions

Variable Base Year Start End

MFP 1995496 = 100 1987
1998&99 = 100 1992
2000-2003 = 100 1996
2004-2009M3 = 100 2000
2010M8&-2013M4 =100 2005
2014M4-2018M6 2009
2019M3-present (2022M11) 2012

OPH 1957-1959=100 1968-05-27 1971-02-01
Index 1967=100 1971-02-02 1981-01-29
Index 1977=100 1981-01-30  1990-08-05
Index 1982=100 1990-08-06  1996-02-07
Index 1992=100 1996-02-08 2010-08-09
Index 2005=100 2010-08-10 2013-08-15
Index 2009=100 2013-08-16 2018-08-14
Index 2012=100 2018-08-15  Current
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Table 2: Revision in Productivity Growth Rates

MFP OPHA | MFP OPHA
[-.1in] Release | Std. Deviation | Mean Absolute Deviation
1st 0.012 0.016 0.010 0.016
Final 0.017 0.015 0.015 0.016
Revision RMS Revision | Mean Absolute Revision
Final - 1st 0.57 0.63 0.56 0.49
2nd - 1st 0.47 0.12 0.44 0.07
1 yr - 2nd 0.18 0.38 0.10 0.28
5yr-1yr 0.21 0.40 0.20 0.32
Final - 5yr 0.33 0.41 0.31 0.30
RBM - 1st 0.43 0.48 0.37 0.37
BM - PBM 0.24 0.21 0.23 0.09
Final - BM 0.43 0.38 0.41 0.29

Revision statistics are expressed as a fraction of the variability (Std. Deviation or Mean
Absolute Deviation) of the 1st release.

PBM indicates Pre-Benchmark Release (the last release prior to 1st Benchmark revision).

BM indicates Benchmark Release.
Final indicates the last release in our sample.
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Table 3: Prior Specification

Parameter Density Parameter 1 Parameter 2

p1 Normal 0.5 1
P2 Normal 0 1
Jf Uniform 0 1
o’ Uniform 0 1
o Uniform 0 1

Parameter 1 is the mean of the normal distribution and the minimum value of the uniform
distribution.

Parameter 2 is the standard deviation of the normal distribution and the maximum value
of the uniform distribution.
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Table 4: Model Parameter Estimates

Parameter MFP OPHA
1 0.428 0.404
(0.420,0.439) (0.398,0.415)
P2 -0.158 -0.055
(-0.177,-0.142) (-0.065,-0.041)
ot 3.206 0.661
(1.499,4.600) (0.337,1.068)
s 0.887 0.942
(0.441,1.444) (0.550,1.313)
o5 0.965 1.285
(0.534,1.410) (0.632,2.022)
o5 1.742 2.231
(1.264,2.148) (1.453,2.917)
ol 2.795 4.514
(1.469,3.993) (2.747,5.379)
oo 4.272 0.895
(2.392,5.203) (0.464,1.322)
o5 1.358 5.029
(0.727,2.003) (4.364,5.602)
o5 0.841 2.902
(0.388,1.387) (1.730,4.106)
o5 2.584 2.817
(1.218,3.893) (1.387,4.539)
oo 34.982 32.363
(33.553,36.740) (28.798,34.464)
or” 1.306 0.756
(0.607,2.147) (0.377,1.166)
03" 1.470 2.260
(0.810,2.007) (1.051,3.467)
o5’ 0.945 3.974
(0.511,1.400) (3.011,4.720)
oy 1.761 1.347
(0.949,2.604) (0.653,2.090)
ol 1.343 2.199
(0.586,2.449) (1.101,4.268)
log-likelihood 689.957 1080.306

Values in ()’s are 25th% and 75th% quantiles; o’s are shown multiplied by 103.
Subscripts [1,2,3,4,5] refer to releases [1st, 2nd, 3rd, BM, Final| for MFP, and [1st, 2nd, 1 Yr,
BM, Final] for OPHA.
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Table 5: Kalman Filter Weights for 7., at the Ragged Edge

Ist  2nd - 1st 3rd/lyr - 2nd benchmark - 3rd/lyr Final - benchmark

MFP  0.124 0.054 0.342 0.259 0.141

0.124  0.054 0.329 0.180

0.126 0.053 0.298

0.127  0.045

0.129
OPHA 0.148 0.155 0.043 0.345 0.060

0.148 0.155 0.042 0.336

0.149 0.148 0.024

0.157 0.132

0.159
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Table 6: Resolution of Estimated Trend Uncertainty

Relative Uncertainty

Conditioning Information MFP OPHA
2 ={01Y;} 0.923 0.967
2= {@T, Yt, y17t+1} 0.867 0.812
R ={Or. Y., y1141, Y2141} 0.836 0.808
R={Or Y, Y1141, Ysit1} 0.813 0.789
R ={Or Y, Y1111, Yatsr1} 0.800 0.686
={607:Y1} 0.780 0.671
2= {@T, Yt_HQ} 0.361 0.261

Relative Uncertainty is defined as var(r.41|62) / var(r+1|Y?).
@7 are the median full-sample estimates of model parameters.
Y;; contains all elements of Y for periods 1 to ¢ + j.

Yj,t+1 is the value at ¢ + 1 of the jth series in Y.

46



Table 7: Inverse Gamma Prior

Parameter Density Parameter 1 Parameter 2
p1 Normal 0.5 1
P2 Normal 0 1
100af,i =1,...,4 Inverse Gamma 0.2 4
1000;",i=1,...,4 Inverse Gamma 1 4
1000;",i=1,...,4 Inverse Gamma 0.05 4

For the normal distribution, Parameter 1 is the mean and Parameter 2 is the standard
deviation.

For the inverse gamma distribution, parameter 1 is s and parameter 2 is v where
pra(ols,v) o< o7 Levs* /207,

47



Table 8: Five Release Parameter Estimates, Inverse Gamma Prior

Parameter MFP OPHA
1 0.428 0.503
(0.425,0.433) (0.474,0.510)
P2 -0.122 -0.102
(-0.129,-0.115) (-0.108,-0.098)
ot 1.885 1.321
(1.578,2.346) (1.176,1.489)
s 1.586 1.348
(1.372,1.833) (1.179,1.540)
o$ 1.540 1.726
(1.320,1.832) (1.469,2.035)
a§ 1.585 1.885
(1.373,1.885) (1.610,2.221)
ot 1.844 2.090
(1.527,2.242) (1.715,2.570)
o5 6.399 3.354
(5.787,7.060) (3.134,3.588)
o5 4.508 5.789
(4.117,4.962) (5.419,6.226)
o5 4.584 5.616
(4.240,5.014) (5.182,6.075)
o5 4.970 5.632
(4.651,5.330) (5.255,6.000)
os 27.509 25.410
(24.955,31.277) (24.390,26.506)
o7’ 0.535 0.495
(0.416,0.710) (0.402,0.621)
03" 0.519 0.583
(0.419,0.659) (0.448,0.796)
o5 0.517 0.643
(0.419,0.661) (0.477,0.979)
op” 0.535 0.556
(0.427,0.695) (0.441,0.734)
ol 0.541 0.591
(0.428,0.708) (0.452,0.840)
log-likelihood 668.4275 1055.547

Values in ()’s are 25th% and 75th% quantiles; o’s are shown multiplied by 103.
Subscripts [1,2,3,4,5] refer to releases [1st, 2nd, 3rd, BM, Final| for MFP, and [1st, 2nd, 1 Yr,
BM, Final] for OPHA.
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Table 9: Trend Kalman Gain, Inverse Gamma Prior

Ist  2nd - 1st 3rd/lyr - 2nd benchmark - 3rd/lyr Final - benchmark

MFP  0.072  -0.026 -0.028 -0.028 -0.026

0.072  -0.026 -0.028 -0.026

0.071  -0.025 -0.025

0.070  -0.023

0.069
OPHA 0.060  -0.019 -0.038 -0.036 -0.034

0.060  -0.019 -0.037 -0.033

0.058  -0.017 -0.033

0.057  -0.012

0.055
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